# Резольвента интегрального уравнения
- #π/определение:
- Рассмотрим интегральное уравнение $\displaystyle \varphi(x)=\lambda \int_{a}^{b} K(x,t)\varphi(t) , dt+f(x) \quad (1).$
- Резольвента интегрального уравнения — такая функция $R(x,t;\lambda)$, что решение уравнения (1) записывается в виде:
- $\displaystyle \varphi ‘(x)=\lambda \int_{a}^{b} R(x,t;\lambda)f(t) , dt.$
- При этом $\lambda$ не должна быть собственным числом.